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Three!dimensional propagation of hyperbolic thermal waves
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Abstract

The hyperbolic heat conduction in a solid bar with a rectangular section is analyzed[ Each surface of the bar is
subjected to a uniform and time varying heat ~ux[ It is shown that\ according to the heat!~ux formulation of hyperbolic
heat conduction\ the heat ~ux density _eld can be determined by employing the analytical solution of a one!dimensional
problem[ The distributions of the heat ~ux density and the temperature are obtained for a bar with a _nite length and
with arbitrary time!evolutions of the heat ~ux on its surfaces[ Special attention is devoted to a two!dimensional case\
i[e[ that of a bar with insulated ends[ In this case\ plots of the temperature _eld at given instants of time are reported
and compared with those which correspond to a vanishing relaxation time[ Þ 0887 Elsevier Science Ltd[ All rights
reserved[
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Nomenclature

ai for i � 0\ 1\ 2\ dimensionless functions of j\ h and L
de_ned by equation "28#
b dimensionless function of j\ h and L de_ned by equa!
tion "33#
c speci_c heat
erfc complementary error function
f dimensionless function of v\ h and L de_ned by equa!
tions "24# and "26#
F"i#

9 for i � 0\ 1\ 2\ arbitrary dimensionless functions of
time
F"i#

L for i � 0\ 1\ 2\ arbitrary dimensionless functions of
time
` dimensionless function of j\ h and L de_ned by equa!
tion "22#
In modi_ed Bessel function of _rst kind and order n

k thermal conductivity
Li for i � 0\ 1\ 2\ lengths of bar edges
L−0 inverse Laplace transform operator
n non!negative integer

� Corresponding author[ Tel[] 99 28 40 5332184^ Fax] 99 28
40 5332185^ E!mail] antonio[barlettaÝmail[ing[unibo[it

Nmax the smallest non!negative integer such that equa!
tion "25# holds
p Laplace transform variable
q heat ~ux density
qi for i � 0\ 1\ 2\ components of q along the axes x0\ x1\
x2

t time
T temperature
T9 temperature for t � 9
u internal energy per unit mass
U Heaviside|s unit step function
w power generated per unit volume
x position vector
xi for i � 0\ 1\ 2\ spatial coordinates
Y\ Z dimensionless coordinates de_ned by equation
"31#[

Greek symbols
a �k:"rc#\ thermal di}usivity
b dimensionless parameter de_ned by equation "20#
h dimensionless time de_ned by equation "11#
u dimensionless temperature de_ned by equation "31#
l dummy integration variable employed in equation
"21#
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L dimensionless parameter de_ned by equation "11#
m dimensionless function of v\ h and L de_ned by equa!
tions "35# and "37#
j dimensionless coordinate de_ned by equation "11#
J dimensionless parameter de_ned by equation "31#
r mass density
s aspect ratio de_ned by equation "31#
t thermal relaxation time
fi for i � 0\ 1\ 2\ dimensionless heat ~uxes de_ned by
equation "12#
8 dimensionless function of v\ h and L de_ned by equa!
tion "36#
x dimensionless time de_ned by equation "31#
c"i#

9 for i � 0\ 1\ 2\ dimensionless functions of h de_ned
by equation "12#
c"i#

0 for i � 0\ 1\ 2\ dimensionless functions of h de_ned
by equation "12#
v dimensionless variable employed in equations "24#\
"26# and "35#Ð"37#[

Superscripts and subscripts
½ Laplace transformed function
? dummy integration variable[

0[ Introduction

In the last decades\ several experiments have shown
that the classical theory of heat conduction in solids based
on Fourier|s law

q � −k9T "0#

may fail when unsteady processes with rapid changes of
the temperature and of the heat ~ux are involved[ Indeed\
equation "0# when combined with the local energy bal!
ance equation

9 = q¦r
1u
1t

� w "1#

and with the relation du � c dT leads\ for a solid with
constant values of r\ c and k\ to the di}erential equation

rc
1T
1t

� k91T¦w[ "2#

Equation "2# is a parabolic partial!di}erential equation
and implies an in_nite propagation speed of the tem!
perature signal[ This property of Fourier|s theory con!
~icts with several experiments performed both at very
low temperatures\ as for instance the experiment by Ack!
erman and Guyer in solid helium ð0Ł\ and at room tem!
peratures\ as the experiment by Kaminski ð1Ł and that
by Mitra et al[ ð2Ł[ In order to obtain a theory of heat
conduction compatible with a _nite propagation speed
of thermal signals\ Cattaneo ð3\ 4Ł and Vernotte ð5\ 6Ł

proposed a modi_cation of Fourier|s law\ which is now
well known as CattaneoÐVernotte|s constitutive equation

q¦t
1q

1t
� −k9T[ "3#

If equation "3# is combined with equation "1# and with the
relation du � c dT\ one obtains for a solid with constant
values of r\ c and k\

rc 0
1T
1t

¦t
11T

1t1 1� k91T¦w¦t
1w
1t

[ "4#

Equation "4# is a hyperbolic partial!di}erential equation
and yields a _nite value\ za:t\ for the propagation speed
of the temperature signals[ Obviously\ in the limit t : 9\
equation "4# tends to equation "2# and the propagation
speed za:t tends to in_nity[

Many solutions of equation "4# have been obtained in
several papers available in the literature[ Most of them
analyze one!dimensional cases and deal either with plane
slabs or with semi!in_nite media bounded by a plane
surface[ A wide list of these papers can be found in the
review by Ozisik and Tzou ð7Ł[ The literature on one!
dimensional propagation of thermal waves in cylindrical
domains is less abundant ð8Ð03Ł[

Few papers analyze hyperbolic heat conduction in two
or three dimensions[ To the authors| knowledge\ all the
solutions available in the literature in more than one
dimension are obtained by employing numerical
methods[ Yang ð04Ł describes a high!resolution numerical
method for the analysis of hyperbolic heat conduction in
two!dimensional domains[ Chen and Lin ð05\ 06Ł present
illustrative examples of thermal!wave propagation in two
dimensions[ These authors solve equation "4# by the fol!
lowing numerical procedure[ First\ the Laplace transform
technique is employed to remove the time derivatives
from equation "4#[ Then\ the discretized equation in the
transform domain is solved by the control volume
method[

In the present paper\ an analytical expression of the
temperature _eld is obtained for a three!dimensional
problem of hyperbolic heat conduction[ In particular\
the propagation of thermal waves in a _nite bar with a
rectangular cross!section is analyzed in the case of
unsteady and uniform heat ~uxes on the six boundary
surfaces[ The heat!~ux formulation results to be par!
ticularly convenient in this case[ In fact\ the solution
of the three!dimensional problem is easily obtained by
employing the solution of an auxiliary one!dimensional
problem[ The latter is solved by means of the Laplace
transform technique[ A detailed analysis is presented for
the special case of a bar with insulated ends[

1[ The heat!~ux formulation

In this section\ the heat!~ux formulation of hyperbolic
heat conduction is outlined[ Then\ it is shown that the
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three components of the heat ~ux density ful_l three
partial!di}erential equations which may be solved sep!
arately[

The heat!~ux formulation of hyperbolic heat con!
duction based on CattaneoÐVernotte|s constitutive equa!
tion is described in the paper by Frankel et al[ ð07Ł[ This
formulation of hyperbolic heat conduction is based on
the partial!di}erential equation satis_ed by the heat ~ux
density q

að9"9 = q#−9wŁ �
1q

1t
¦t

11q

1t1
[ "5#

Equation "5# is easily obtained by combining equation
"3# with equation "1# and with the relation du � c dT\ for
a solid with constant values of r\ c\ k and t[

In the following\ it will be shown that\ if 9×q � 9 for
t � 9\ equation "5# can be expressed in a simpler form[
On account of the vector identity ð08Ł

9"9 = q# � 91q¦9×"9×q# "6#

equation "5# can be rewritten as

að91q¦9×"9×q#−9wŁ �
1q

1t
¦t

11q

1t1
[ "7#

If the thermal relaxation time t is nonzero\ equation "3#
implies the relation

1

1t
"et:tq# � −

k
t
9"et:tT#[ "8#

As a consequence of equation "8#\ one obtains

1

1t
"et:t 9×q# � 9[ "09#

Therefore\ 9×q can be expressed as

9×q"x\ t# � e−t:t 9×q"x\ 9# "00#

so that\ if 9×q is zero for t � 9\ it is zero for every t × 9[
In this case\ equation "7# yields

að91q−9wŁ �
1q

1t
¦t

11q

1t1
[ "01#

Indeed\ the constraint 9×q � 9 for t � 9 is a restriction
not so severe as it seems\ for the following reason[
Usually\ the initial state of a non!stationary heat con!
duction problem is either a thermodynamic equilibrium
state or\ at least\ a steady state[ In the former case\ q"x\ 9#
is zero and\ as a consequence\ is irrotational[ In the latter
case\ 1q"x\ 9#:1t is zero\ so that for t � 9 equation "3#
coincides with equation "0#[ If equation "0# holds at t � 9
and k is a constant\ q"x\ 9# is irrotational[ It should be
pointed out that\ unlike equation "5#\ equation "01# yields
no interaction between the components of q[ Indeed\
equation "01# can be split into the three scalar equations

a $91q0−
1w
1x0%�

1q0

1t
¦t

11q0

1t1
"02#

a $91q1−
1w
1x1%�

1q1

1t
¦t

11q1

1t1
"03#

a $91q2−
1w
1x2%�

1q2

1t
¦t

11q2

1t1
[ "04#

In principle\ equations "02#Ð"04# imply that the three
components q0\ q1 and q2 are independent variables[ How!
ever\ an interaction between q0\ q1 and q2 can be induced
by the boundary conditions[ For instance\ if the bound!
ary temperature is prescribed\ the energy balance equa!
tion

9 = q¦rc
1T
1t

� w "05#

implies that a constraint on 9 = q is present at the bound!
ary[ In this case\ q0\ q1 and q2 cannot be considered as
independent[ On the other hand\ if the boundary heat ~ux
is prescribed\ q0\ q1 and q2 can be determined separately[ A
three!dimensional problem of this kind will be analyzed
in the forthcoming section[

According to the heat!~ux formulation of hyperbolic
heat conduction\ when the heat ~ux density q has been
obtained by solving equations "02#Ð"04#\ the temperature
distribution can be evaluated by employing equation "05#\
i[e[

T"x\ t# � T"x\ 9#−
0
rc g

t

9

ð9 = q"x\ t?#−w"x\ t?#Ł dt?[ "06#

2[ A three!dimensional problem

In this section\ the heat!~ux formulation is employed
in the analysis of hyperbolic heat conduction in a bar
with a rectangular cross section and with a _nite length[

Let us consider a bar with a length L0 and a rectangular
cross section with sides L1 and L2[ A drawing of the bar
and of the coordinate system is reported in Fig[ 0[ The
bar has constant values of the mass density r\ of the
thermal conductivity k\ of the speci_c heat c and of the
thermal relaxation time t[ Moreover\ no internal heat
generation occurs within the bar\ so that w � 9[ Each
surface of the bar is subjected to a uniform and non!
stationary heat ~ux density\ namely

q0"9\ x1\ x2\ t# � q9F
"0#
9 "t#\ q0"L0\ x1\ x2\ t# � −q9F

"0#
L "t#

"07#

q1"x0\ 9\ x2\ t# � q9F
"1#
9 "t#\ q1"x0\ L1\ x2\ t# � −q9F

"1#
L "t#

"08#
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Fig[ 0[ Drawing of the bar and of the coordinate system[

q2"x0\ x1\ 9\ t# � q9F
"2#
9 "t#\ q2"x0\ x1\ L2\ t# � −q9F

"2#
L "t#

"19#

where the functions F "i#
9 "t# and F "i#

L "t#\ for i � 0\ 1\ 2\ are
prescribed dimensionless functions of t[ The initial con!
ditions are

q"x0\ y1\ z2\ 9#� 9\ T"x0\ y1\ z2\ 9#� T9[ "10#

On account of equation "3#\ equation "10# ensures that
1q:1t � 9 for t � 9[ Moreover\ equations "00# and "10#
imply that 9×q � 9 at every instant of time\ so that
equations "02#Ð"04# hold[ Obviously\ equations "02#Ð"04#\
together with the boundary conditions "07#Ð"19# and the
initial condition "10#\ yield no interaction between q0\ q1

and q2[ In other words\ each of the components q0\ q1 and
q2 can be determined separately[ On account of equations
"02#Ð"04# and "07#Ð"19#\ one can conclude that q0 depends
only on x0 and t\ q1 depends only on x1 and t\ q2 depends
only on x2 and t[ Thus\ each qi\ for i � 0\ 1\ 2\ is the
solution of a one!dimensional heat conduction problem[

3[ An auxiliary one!dimensional problem

In this section\ the distribution of the heat ~ux density
and the temperature _eld within the bar described in the
preceding section are obtained by means of an auxiliary
one!dimensional boundary value problem\ which is
solved by the Laplace transform method[

For i � 0\ 1\ 2\ let us de_ne the dimensionless quantities

j �
xi

Li

\ h �
at

L1
i

\ L �
at

L1
i

"11#

and the dimensionless functions

fi"j\ h\ L# �

qi 0Lij\
L1

i h

a 1
q9

\ c"i#
9 "h# � F "i#

9 0
L1

i h

a 1 \

c"i#
0 "h# �F "i#

L 0
L1

i h

a 1 [ "12#

On account of equations "11# and "12#\ equations "02#Ð
"04# and "07#Ð"10# yield

11fi

1j1
�

1fi

1h
¦L

11fi

1h1
"13#

fi"9\ h\ L# � c"i#
9 "h#\ fi"0\ h\ L# � −c"i#

0 "h# "14#

fi"j\ 9\L# � 9\
1fi"j\ h\ L#

1h bh�9

� 9[ "15#

Equations "13#Ð"15# can be solved by the Laplace trans!
form method[ The transform of fi"j\ h\ L# is given by

f½ i"j\ p\ L# � g
�

9

e−phfi"j\ h\ L# dh[ "16#

On account of the properties of Laplace transforms ð19Ł\
equations "13# and "15# yield

11f½ i

1j1
� "p¦Lp1#f½ i "17#

while equation "14# can be rewritten as

f½ i"9\ p\ L# � c½ "i#
9 "p#\ f½ i"0\ p\ L# � −c½ "i#

0 "p#[ "18#

The solution of equations "17# and "18# can be expressed
as

f½ i"j\ p\ L# � c½ "i#
9 "p#

sinh ðb"0−j#Ł
sinh "b#

−c½ "i#
0 "p#

sinh "bj#
sinh "b#

"29#

where

b � "p¦Lp1#0:1[ "20#

Then\ on account of the convolution theorem for Laplace
transforms ð19Ł\ equation "29# yields

fi"j\ h\ L# � g
h

9 $
dc"i#

9 "l#
dl

`"0−j\ h−l\ L#

−
dc"i#

0 "l#
dl

`"j\ h−l\ L#% dl "21#

where `"j\ h\ L# is the inverse transform of the function

½̀"j\ p\ L# �
sinh "bj#
p sinh "b#

[ "22#
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As is shown in the Appendix\ `"j\ h\ L# can be expressed
as

`"j\ h\ L# � s

Nmax

n�9

ð f "1n¦0−j\ h\ L#−f "1n¦0¦j\ h\ L#Ł

"23#

where\ if L � 9\ f "v\ h\ L# is given by

f "v\ h\ L# � U"h−vzL# $e−v:"1zL#

¦
v

1zL g
h

vzL

e−h?:"1L#

zh?1−v1L

×I0 0
0

1L
zh?1−v1L1 dh?% "24#

and Nmax is the smallest non!negative integer such that

Nmax −
0
1 0

h

zL
−0¦j1 [ "25#

On the other hand\ if L � 9\ f "v\ h\ 9# is given by

f "v\ h\ 9#� erfc 0
v

1zh1 "26#

while Nmax � ¦�[
On account of equations "06#\ "11# and "12#\ the tem!

perature _eld for the three!dimensional case can be ex!
pressed as

T"x\ t# � T9−
q9

rc g
t

9

s
2

i�0

0
Li

ai 0
xi

Li

\
at?

L1
i

\
at

L1
i
1 dt? "27#

where\ for i � 0\ 1\ 2\

ai"j\ h\ L# �
1fi"j\ h\ L#

1j
[ "28#

To summarize\ for any arbitrary choice of the dimen!
sionless functions F"i#

9 "t# and F"i#
L "t#\ with i � 0\ 1\ 2\ the

temperature _eld within the bar can be determined by
employing equations "12#\ "21# and "23#Ð"28#[

4[ A bar with insulated ends

In this section\ the expression of the temperature _eld
obtained for the three!dimensional conduction in a bar
with prescribed boundary heat ~uxes is applied to a
special case] a bar with insulated ends[

Let us consider the bar described in the preceding sec!
tions and assume that the surfaces x0 � 9 and x0 � L0 are
insulated\ i[e[ that F"0#

9 "t# and F"0#
L "t# are zero[ As a conse!

quence of equations "12#\ "21# and "28#\ one can conclude
that\ in this case\ both f0"j\ h\ L# and a0"j\ h\ L# are zero[
Therefore\ equation "27# ensures that the temperature
does not depend on x0\ so that the heat conduction is
two!dimensional[ Indeed\ if the ends are insulated\ the
temperature distribution is the same which would occur
for a bar with an in_nite length[

Let us assume that the same constant heat ~ux density
is prescribed on the non!insulated boundary surfaces\
namely

F"1#
9 "t# � F"2#

9 "t# � F"1#
L "t# � F"2#

L "t# � U"t#[ "39#

In this case\ equation "21# yields\ for i � 1\ 2\

fi"j\ h\ L# � `"0−j\ h\ L#−`"j\ h\ L#[ "30#

Let us de_ne the dimensionless quantities

Y �
x1

L1

\ Z �
x2

L1

\ x �
at

L1
1

\ J �
at

L1
1

s �
L2

L1

\ u � k
T−T9

q9L1

[ "31#

Equations "27# and "31# yield

u"Y\ Z\ x# � b"0−Y\ x\ J#¦b"Y\ x\ J#

¦sðb"0−Z:s\ x:s1\ J:s1#¦b"Z:s\ x:s1\ J:s1#Ł "32#

where b"j\ h\ L# is de_ned as

b"j\ h\ L# � g
h

9

1`"j\ h?\ L#
1j

dh?[ "33#

On account of equations "23#\ "24# and "26#\ the function
b"j\ h\ L# is given by

b"j\ h\ L# � s

Nmax

n�9

ðm"1n¦0−j\ h\ L#¦m"1n¦0¦j\ h\ L#Ł

"34#

where\ if L � 9\ the function m"v\ h\ L# can be expressed
as

m"v\ h\ L# � U"h−vzL#ðzL e−v:"1zL#

−g
h

vzL
8"v\ h?\ L# dh?Ł[ "35#

The function 8"v\ h\ L# employed in equation "35# is
de_ned as

8"v\ h\ L# � −
v¦3zL

7L
e−v:"1zL#
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¦
0

1zL g
h

vzL
e−h?:"1L#

K

H

H

k

I0 0
0

1L
zh?1−v1L1

zh?1−v1L

−
v1

1

I1 0
0

1L
zh?1−v1L1

h?1−v1L

L

H

H

l

dh?[ "36#

On the other hand\ m"v\ h\ 9# is given by

m"v\ h\ 9#� 1Xh

p
e−v1:"3h#−v erfc 0

v

1zh1 [ "37#

For arbitrarily chosen values of the dimensionless par!
ameters J and s\ equations "32# and "34#Ð"37# allow one
to evaluate the dimensionless temperature _eld u"Y\ Z\ x#[

5[ Discussion of the results

Figures 1Ð4 refer to a bar with insulated ends and with
L1 � L2\ i[e[ with s � 0[ In particular\ Figs 1 and 3 present
plots of the dimensionless temperature u as a function of
Y and Z\ for J � 0[ These plots refer to x � 9[14 and
x � 9[64\ respectively[ Figures 1 and 3 display the dis!
tribution of u in the region with 9¾ Y ¾ 9[4 and
9 ¾ Z ¾ 9[4[ On account of the symmetry of the bar and
of the boundary conditions\ the behaviour of u in the
whole section of the bar is easily inferred from Figs 1 and
3[ Figure 1 shows that\ when x � 9[14\ the temperature
signal has not yet reached the internal region with
9[14 ¾ Y ¾ 9[64 and 9[14 ¾ Z ¾ 9[64[ An interference
between the wavefronts generated on the boundary
planes Y � 9 and Z � 9 is present in the region with
9 ¾ Y ¾ 9[14 and 9 ¾ Z ¾ 9[14[ In this region\ the higher
values of u are caused by the overlap of the temperature

Fig[ 1[ Plot of the dimensionless temperature u as a function of
Y and Z for x � 9[14\ s � 0 and J � 0[

Fig[ 2[ Plots of u vs[ Y at Z � 9 and at Z � 9[4 for x � 9[14 and
s � 0[ The solid lines refer to J � 0\ while the dashed lines refer
to J � 9[

Fig[ 3[ Plot of the dimensionless temperature u as a function of
Y and Z for x � 9[64\ s � 0 and J � 0[

signals which propagate in the Y!direction and in the Z!
direction[

Figure 2 refers to x � 9[14 and presents a comparison
between the behaviour of u for J � 0 and for J � 9\ both
at Z � 9 and at Z � 9[4[ The plots for J � 0 display two
discontinuities of u at Y � 9[14 and at Y � 9[64[ Indeed\
since the propagation speed of thermal signals is za:t\
the distance spanned by the thermal wave in a dimen!
sionless time 9[14 is given by 9[14L1

1:zat^ if J � 0\ this
distance is equal to 9[14L1[ Hence\ for x � 9[14 and
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Fig[ 4[ Plots of u vs[ Y at Z � 9 and at Z � 9[4 for x � 9[64 and
s � 0[ The solid lines refer to J � 0\ while the dashed lines refer
to J � 9[

Z � 9\ no thermal signal travelling in the Y!direction has
reached the region 9[14 ¾ Y ¾ 9[64[ For x � 9[14 and
Z � 9[4\ no thermal signal travelling either in the Y!
direction or in the Z!direction has reached the region
9[14 ¾ Y ¾ 9[64[

Figure 3 refers to x � 9[64 and J � 0[ At the dimen!
sionless time 9[64\ an interference between the tem!
perature wavefronts generated at the four boundary
planes Y � 9\ Y � 0\ Z � 9 and Z � 0 occurs in the
internal region with 9[14 ¾ Y ¾ 9[64 and
9[14 ¾ Z ¾ 9[64[ In this region\ the thermal signals com!
ing from the four boundary planes overlap\ so that higher
temperatures occur[ Indeed\ for x � 9[64\ the tem!
perature signals coming from the boundary have already
reached the central axis of the bar\ i[e[ the position
Y � 9[4 and Z � 9[4\ and are travelling towards the
boundary[

In Fig[ 4\ the behaviour of u for J � 0 is compared
with the behaviour for J � 9\ at the planes Z � 9 and
Z � 9[4 for x � 9[64[ This _gure shows that\ for J � 0
and Z � 9\ an interference between the temperature wav!
efronts travelling in the Y!direction and that generated
at Z � 9 occurs in the region 9[14 ¾ Y ¾ 9[64[ At
Z � 9[4\ an interference between the thermal waves trav!
elling in the Y!direction and those travelling in the Z!
direction occurs in the region 9[14 ¾ Y ¾ 9[64[

Figures 5Ð00 refer to a bar with insulated ends and
with L2 � 1L1\ i[e[ with s � 1[ In particular\ Figs 5 and

Fig[ 5[ Plot of the dimensionless temperature u as a function of
Y and Z for x � 9[14\ s � 1 and J � 0[

Fig[ 6[ Plots of u vs[ Y at Z � 9 and at Z � 0 for x � 9[14 and
s � 1[ The solid lines refer to J � 0\ while the dashed lines refer
to J � 9[

8 present plots of the dimensionless temperature u as a
function of Y and Z for J � 0\ which refer to x � 9[14
and x � 9[64\ respectively[

Figure 5 displays an overlap between the temperature
waves generated at the planes Y � 9 and Z � 9\ in the
region with 9 ¾ Y ¾ 9[14 and 9 ¾ Z ¾ 9[14[ Moreover\
the temperature signal has not yet reached the internal
region with 9[14 ¾ Y ¾ 9[64 and 9[14 ¾ Z ¾ 0[64[ Fig!
ures 6 and 7 refer to x � 9[14 and compare the dis!
tributions of u for J � 0 and for J � 9 on the planes
Z � 9\ Z � 0\ Y � 9 and Y � 9[4[
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Fig[ 7[ Plots of u vs[ Z at Y � 9 and at Y � 9[4 for x � 9[14 and
s � 1[ The solid lines refer to J � 0\ while the dashed lines refer
to J � 9[

Fig[ 8[ Plot of the dimensionless temperature u as a function of
Y and Z for x � 9[64\ s � 1 and J � 0[

Figure 8 refers to J � 0 and x � 9[64[ An analysis of
this _gure shows that four regions can be identi_ed]
"a# the region with 9 ¾ Y ¾ 9[14 and 9 ¾ Z ¾ 9[64^
"b# the region with 9[14 ¾ Y ¾ 9[4 and 9 ¾ Z ¾ 9[64^ "c#
the region with 9¾ Y ¾ 9[14 and 9[64¾ Z ¾ 0^ "d# the
region with 9[14 ¾ Y ¾ 9[4 and 9[64 ¾ Z ¾ 0[ In the
region "a#\ an interference between the wavefronts com!
ing from the planes Y � 9 and Z � 9 is present[ In the
region "b#\ an interference between the wavefronts com!
ing from the planes Y � 9\ Y � 0 and Z � 9 occurs[ In
the region "c#\ only the temperature signals coming from
the plane Y � 9 are present[ Finally\ in the region "d#\ an

Fig[ 09[ Plots of u vs[ Y at Z � 9 and at Z � 0 for x � 9[64 and
s � 1[ The solid lines refer to J � 0\ while the dashed lines refer
to J � 9[

Fig[ 00[ Plots of u vs[ Z at Y � 9 and at Y � 9[4 for x � 9[64
and s � 1[ The solid lines refer to J � 0\ while the dashed lines
refer to J � 9[
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interference between the wavefronts coming from the
planes Y � 9 and Y � 0 occurs[ Figures 09 and 00 refer
to x � 9[64 and compare the distributions of u for J � 0
and for J � 9 on the planes Z � 9\ Z � 0\ Y � 9 and
Y � 9[4[ In Figs 09 and 00\ the interference patterns
between the wavefronts\ which have been described in
the analysis of Fig[ 8\ can be easily identi_ed[

In Fig[ 01\ plots of u vs[ x on the central axis of the
bar\ i[e[ at the position Y � 9[4 and Z � s:1\ are reported
for both J � 0 and J � 9[ These plots refer to the interval
9 ¾ x ¾ 1 and to three di}erent values of the aspect ratio]
s � 0\ s � 1 and s � 3[ In particular\ Fig[ 01 shows that
the plots for J � 0 present discontinuities\ which can be
explained as follows[

If s � 0\ u undergoes two step changes] for x � 9[4
and for x � 0[4[ The discontinuity for x � 9[4 is due to
the simultaneous arrival of the wavefronts coming from
the four boundary planes\ while that for x � 0[4 is due
to the arrival of the wavefronts which have been re~ected
from the boundary planes[

If s � 1\ u undergoes three step changes] for x � 9[4\
for x � 0 and for x � 0[4[ The simultaneous arrival of
the wavefronts generated at the boundary planes Y � 9
and Y � 0 causes the _rst discontinuity\ for x � 9[4[ The
arrival of the wavefronts generated at the boundary
planes Z � 9 and Z � 1 is delayed and occurs for x � 0\
in correspondence of the second discontinuity[ The third
step change\ i[e[ that for x � 0[4\ is due to the arrival of

Fig[ 01[ Plots of u vs[ x at Y � 9[4 and Z � s:1 for s � 0\ s � 1
and s � 3[ The upper frame refers to J � 0\ while the lower
frame refers to J � 9[

the wavefronts re~ected by the boundary planes Y � 9
and Y � 0[

Finally\ if s � 3\ u undergoes two step changes] for
x � 9[4 and for x � 0[4[ In the interval 9¾ x ¾ 1 and
for this value of the aspect ratio\ no thermal signal which
propagates in the Z!direction reaches the central axis\ i[e[
the position Y � 9[4 and Z � 1[ As a consequence\ in the
interval 9 ¾ x ¾ 1\ the time!evolution of u is in~uenced
only by the thermal waves generated at the boundary
planes Y � 9 and Y � 0[ The arrival of the thermal waves
coming from these boundary planes causes the dis!
continuity for x � 9[4\ while the arrival of the waves
re~ected from these planes causes the discontinuity for
x � 0[4[

An interesting comparison can be made between the
behaviour of the temperature _eld discussed in this sec!
tion and the behaviour of the temperature _eld in an
in_nite solid cylinder whose boundary heat ~ux under!
goes a step change ð02Ł[ In both cases\ an internal propa!
gation of hyperbolic thermal waves occurs[ However\ in
the case of a solid cylinder\ a step change of the boundary
heat ~ux yields a singularity of the temperature _eld
whenever the wavefront created or re~ected from the
boundary reaches the axis of the cylinder ð02Ł[ No such
behaviour is detected in the case of a bar with a rect!
angular cross!section[ Indeed\ the cylinder with a cir!
cular cross!section represents a special geometry\ i[e[ the
axis of the cylinder acts as a focus for the thermal waves
coming from the boundary[ When a thermal wave with
a sharp wavefront reaches the axis of the cylinder\ the
sharp wavefront focuses on the axis and a singularity
occurs[ On the contrary\ the heat conduction problem
examined in the present paper deals with a cylinder hav!
ing a rectangular cross!section[ In this geometry\ no point
acts as a focus for the thermal waves[ As a consequence\
the interference between the thermal waves does not yield
singularities\ even if sharp wavefronts are involved[

6[ Conclusions

The hyperbolic heat conduction in a solid bar with a
rectangular cross!section and an unsteady boundary heat
~ux has been analyzed[ The heat!~ux formulation has
been employed[ It has been proved that\ if a uniform heat
~ux is prescribed on each boundary plane\ the com!
ponents of the heat ~ux density can be considered as
independent variables[ Moreover\ each of these com!
ponents can be determined as the solution of a suitable
one!dimensional heat conduction problem[ An analytical
solution of this one!dimensional problem has been
obtained by the Laplace transform method[ Then\ the
temperature _eld for the three!dimensional propagation
of thermal waves induced by arbitrary and unsteady heat
~uxes on the six boundary planes has been obtained
by employing the local energy!balance equation[ Special
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attention has been devoted to the case of a bar with
insulated end!sections and such that the other boundary
planes undergo a step!change of the heat ~ux density[
The interference patterns of the thermal waves have been
analyzed for some aspect ratios of the bar cross!section[
Finally\ a comparison has been performed with the
propagation of thermal waves in a solid cylinder having
a circular cross!section and subjected to a step!change of
the boundary heat ~ux\ studied in ref[ ð02Ł[ The major
di}erence between the two cases has been emphasized[
The circular cross!section causes the axis of the cylinder
to be a focus for the thermal waves\ while no focus exists
in the case of a rectangular cross!section[ As a conse!
quence\ while thermal waves with sharp wavefronts yield
singularities of the temperature _eld in the case of the
circular cylinder\ no singularity occurs in the case of the
bar with a rectangular cross!section[

Appendix

Function ½̀"j\ p\ L# can be expressed as

½̀"j\ p\ L# �
sinh "bj#
p sinh "b#

�
e−b

p
"ebj−e−bj#

0

0−e−1b

�
e−b

p
"ebj−e−bj# s

�

n�9

e−1nb

� s
�

n�9 $
e−"1n¦0−j#b

p
−

e−"1n¦0¦j#b

p % [ "A0#

On account of equation "A0#\ the inverse transform
`"j\ h\ L# is given by

`"j\ h\ L# � s
�

n�9 $L−0 6
e−"1n¦0−j#b

p 7
−L−0 6

e−"1n¦0¦j#b

p 7% "A1#

where L−0 is the inverse Laplace transform operator[ As
it can be deduced by employing the tables of Laplace
transforms ð10Ł\ if L � 9\ the following relation holds

f "v\ h\ L#

0 L−0 6
e−vb

p 7� U"h−vzL# $e−v:"1zL#

¦
v

1zL g
h

vzL

e−h?:"1L#

zh?1−v1L
I0 0

0
1L

zh?1−v1L1 dh?%
"A2#

where U is Heaviside|s unit step function and In is the

modi_ed Bessel function of _rst kind and order n[ On the
other hand\ in the case L � 9\ one obtains ð10Ł

f "v\ h\ 9#0 L−0 6
e−vzp

p 7� erfc 0
v

1zh1 "A3#

where erfc is the complementary error function[ On
account of equations "A2# and "A3#\ equation "A1# can
be rewritten as

`"j\ h\ L# � s
�

n�9

ð f "1n¦0−j\ h\ L#−f "1n¦0¦j\ h\ L#Ł[

"A4#

If L � 9\ the sum which appears in equations "A4# is not
in_nite[ In fact\ as it can be inferred from equations "A2#
and "A4#\ the non!vanishing terms in equation "A4# ful_l
the inequality

n ¾
0
1 0

h

zL
−0¦j1 [ "A5#

Therefore\ if Nmax is the smallest non!negative integer
such that

Nmax −
0
1 0

h

zL
−0¦j1 "A6#

equation "A4# can be rewritten as

`"j\ h\ L# � s

Nmax

n�9

ð f "1n¦0−j\ h\ L#−f "1n¦0¦j\ h\ L#Ł[

"A7#

Equations "A6# and "A7# imply that Nmax � 9 and
`"j\ h\ L# � 9 when h ³ "0−j#L0:1[ If L � 9\ equation
"A7# can still be employed provided that Nmax � ¦�[
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